Mean Value Theorem

IMPORTANT

Mean Value Theorem: Overview

This topic covers concepts such as Mean Value Theorems, Rolle's Theorem, Geometrical Explanation of Rolle's Theorem, Algebraic Interpretation of Rolle's Theorem, Lagrange's Mean Value Theorem, Geometrical Interpretation of LMVT, etc.

Important Questions on Mean Value Theorem

HARD
IMPORTANT

The following function:   f( x )=sinx+cosx,x[ 0, π 2 ] is verifying which of the following rule or theorem:

MEDIUM
IMPORTANT

Verify the Cauchy's mean value theorem for the functions

f(x)=1x, and g(x)=x2-4 on the interval 1,2.

MEDIUM
IMPORTANT

Check the validity of Cauchy's mean value theorem for the functions

f(x)=x3, and g(x)=x2 on the interval 0,2.

MEDIUM
IMPORTANT

Verify Cauchy's mean value theorem for the functions f(x)=sinx, and g(x)=cosx in 0,π2.

MEDIUM
IMPORTANT

Check the validity of Cauchy's mean value theorem for the functions

f(x)=x4, and g(x)=x2 on the interval 1,2.

MEDIUM
IMPORTANT

The point on the curve y=x2, where the tangent is parallel to the line joining the points (1, 1) and (2, 4) is

MEDIUM
IMPORTANT

The point on the curve y=x3-3x, where the tangent to the curve is parallel to the chord joining (1,2) and (2, 2) is 

MEDIUM
IMPORTANT

Find a point on the curve y=x3, where the tangent to the curve is parallel to the chord joining the points (1, 1) and (3, 27).

EASY
IMPORTANT

If fx=logsinx, xπ6,5π6, then value of c by applying L.M.V.T. is

EASY
IMPORTANT

The constant c of Lagrange's mean value theorem for the function fx=2x+34x-1 defined on 1,2 is

MEDIUM
IMPORTANT

Let f(x) be differentiable on [1,6] and f(1)=-2 . If f(x) has only one root in (1,6), then there exists c(1,6) such that

MEDIUM
IMPORTANT

Find the value of p'' and q'' if the function ft=t3-6t2+pt+q defined on 1,3 satisfies the Rolle's theorem for c=23+13

HARD
IMPORTANT

Let gt=x1x2ft, xdx. Then g't=x1x2tft, xdx. Consider fx=0πln1+xcosθcosθdθ.

fx is

MEDIUM
IMPORTANT

The value of 'c' when Cauchy's mean value theorem is applied for the functions f(x)=cosx & g(x)=sinx in the interval a,b is c=a+bm. Then the value of m is

MEDIUM
IMPORTANT

Cauchy's mean value theorem is valid for the functions f(x)=x4 & g(x)=x2 in the interval 1,2

MEDIUM
IMPORTANT

x0, 1-x22<cosx

MEDIUM
IMPORTANT

Verify L.M.V.T. for the function

fx=xx+42, x0,4

MEDIUM
IMPORTANT

Verify Rolle's theorem for the following function

fx=e-xsinx-cosx xπ4,5π4

MEDIUM
IMPORTANT

If Rolle's theorem holds for the function f(x)=(x-2)logx,x[1,2], show that the equation xlogx=2-x is satisfied by at least one value of x in (1,2) .

HARD
IMPORTANT

Find c if LMVT is applicable for
f(x)=x(x-1)(x-2),  x[0,1/2]